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LAMINAR BOUND&tY LAYER ON CONE IN SUPERSONIC FLOW AT LARGE ANGLE
OF ATTACK ‘

By FEANKLIN K. MOORE

SUMMARY

The laminar boundary-luyer Jow about a cireukr cone at
large angk-s of attuck i%a wpersonic stream b been anulyzed
in the plune of symmetry by a method applicable in gen.end to
the jlow about conical bodies.

At the bottom oj h cone, velocity proj.kx were obtainzd diow-
ing the mpected tmiency oj the 130umiury layer to beeome thinner
on the under side of the cone m the angle oj attack h incread.

At the top of th COW, the anulymk.jai?ed to @ wnt%ue
solutwns, except for small angiixof atiuck. Beyond a certain
critical angle of aitackl boundury4ayer &w has not mist in
the plane of symmetry, ti indim-ting sepanzih. This
cm”ticalangleisprewnted a-s a function oj Mach number and
cone vert.a angle.

INTRODUCTION

The supersonic aerodynamics of pointed bodies has oon-
sirlerable current interest in cemection with the design of
airoraft and missile fuselages. b important fpature of the
flow about such bodies is the behavior of the boundary layer
and, in particular, the flow separation which may occur along
the low-pressure side of the body due to angle of attack.
The present report will oonsider the development of the lami-
nar boundary layer on the surface of a right circular cone at
an angle of attack to a supersonic stream (see fig. 1). The
conical conjuration may be considered an idealization of
the nose portion of rLsupemcmicaircraft fuselage.

Outside a thin boundary layer on a cone, the nonvisems
supersonic flow (upon which the boundary layer itself de
pends) is “conical” in the sense that physical quantities
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(such as velocity and pressure) me constant along any
proceeding fxom the cone apex. The description of
outer flow-, contained in refer~nces 1 to 3 and ‘elucidated in
reference 4, is considered adequate for the purposes of. this
report, but subject to restrictions which will be discussed
subsequently.

In figure 2 is shown qualitatively the circumferential
pressure distribution on the cone surface predicted for var-
ious angles of attack (see ref. 4). These pressure distribu-
tions depend only on the character of the nonviscous flow
beyond the boundary layer, on the assumption that the
boundary layer is extrem61ythin. When the angle of attack
is very small, the pressure decreases monotonically from
the bottom of the cone around to the top. For larger
angles of attack there appears a region near the top of the
cone whqein the prewure gradient reverses and the pressure
increases toward the top.’ AE the angle of attack is further
increased, this region beeomes greater in extent.
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FIGURD 2.—Presmredistributionaroundcone for varioucrangesof
angleof attack-

As a consequence of the conical nature of the nonviscous
flow, it is shown in references 6 and 6 that the laminar
boundary layer has parabolic similarity along generators of
the cone; that is, velocity, pressure, and density inside the
boundary layer are constant along any parabola (see fig. 1)
drawn in any one meridiwMdplane (plane passing through
the body axis). Of course, circumferential variation of these
quantitiw is to be expected when the cone is at angle of
attack.

In reference 7 the effect of ar@e of attack on the laminar
botidary layer is analyzed, in the limit of very small angle
of attaok, with the result that the boundary layer tends to be
thickbr on the top of the cone than on the bottom (fig. 3(a)).

~ AwIeofAttack”by rnmklblK. blacm 1952.
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This is to be expected since the fluid near the base of the
boundary layer has low inertia, is therefore inclined to
follow the direction of the circumferential pressure gradient
more ‘closely than is the outer flow, and thus tends to drain
may from beneath the cone and accumulate near the top.
IVo separation is encountered because, for small angle of
attack, the pressure gradient is always favorable (fig. 2(a)).

For larger angles of attack, when the pressure gradient
reveme9 direction near the top of the cone (fig. 2(tr)), experi-
ment indicates the formation of boundary-layer “lobes”
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(a) Test configuration.

(b) Variationof totalheadwithangleof attack
FIGURE 4.—Variation withangleof attackof totalheadmeasuredin

boundarylayerof cone. M, 8.095;e, 7.5°.

(iig. 3(b)). When the angle of attack is further inoreased,
the lobe pattern finally breaks away from the body to form
a vortex street (fig. 3(c)).

Recently (ref. 8), at the Lewis laboratory a brief experi-
ment was carried out in which a total-head probe was placed
near the surface at the top of a cone and pointed toward
the cone aptm (fig. 4(a)). me cone was mounted in a
supersonic wind tunnel, and the probe was used to measum
the total head in the bounda& layer at a tied height above
the surface. as the angle of attack was varied by rotating
the cone in the meridional plane containing the probe.
Figure 4(b) shows the result of this test. The decrmm in
indicated total head aa the angle of attack was increased
from negative to positive values may be interpreted to
mean an increase in boundary-layer thickness at the top
of the cone. Beyond a certain angIe of attack, this tend-
ency reverses, and the boundary layer apparently becomes
thinner as the angle of attack is increased. This is a pos-
sible indication of the tendency to form lobes, as illustrated
in figure 3(b).

In the present report of research conducted during tho
summer of 1952 at the NACA Lewis laboratory, the lwnbmr
boundary layer in the “meridionalplane of symmetry of the
flow ii analyzed for large anglea of attack in order to provide
velocity profik on the bottom of the cone and to provide
a certain degree of @ight into the question of sepmation
on the top.

SOLUTIONOF BOUNDARY-LAYEREQUATIONSIN PLANEOF
SYMMETRY

BOUNDARY-IAYEZlEQUATIONSIN PLANE OF SYMMBTItY

In reference 7, it is shown that the dimensionlesslaminar-
boundary-layer equations for supersonic flow over a circular
cone are

T+(fJ2+(gJ2= T1+u12+w12 .(lC)

(id)

Equations (la) and (lb) are momentum equations, equation
(lc) is an energy balance, and equation (id) is the equation
of state. A complete list of symbols is provided in appendix
A. The functions j(X,P) and g(h,p) are related b the two-
component vector potential disc&sed in reference 6 and are
defined according to the relations

u= f ,1.

1
(2)

W=gi
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in n mrmner such as to satisfy the continui~ equation
identically.

The coordinate A hm”been formed as follows: ‘

~afi[(:)-’’’~’’d”lz-’”- (3)

The coordinate p is the angle between the vertical plane of
symmetry of the flow and any meridional plane of the body
(fig, 1). Equations (1) and (3) imply that parabolic simi-
larity of the Blaaius type exists in meridional planes. As
pointed out in references 5 and 6, this conclusion of parabolic
similarity applies for the boundary layer on any smooth
conically symmetric body in supersonic flow (for example, a
cone of elliptic cross section).

In reference 7, all quantifies are made dimensionless by
referring them to the properties of the nonviscous flow at
the outer edge of the boundary layer when the cone is at
zero angle of attack. In the present keport it will be con-
venient to use a d.iiferent reference condition (subscript r)
which will be defined subsequently. The foIloWing quan-
Ltitiea on the left are to be identified with the dimensionless
groups on the right:

P-P/Pr
I

T.-2cpT/u:
}

(4)

P ‘PIPr’%2
I

Z,y ‘-prurz/cpr, pr%y/cpr J

where the constant C arisea from the assumption of the
temperature-viscosity relation of Ghapman and Rubcsin
(ref. 9):

:=O; (tia)
r

with O being defined as follows, in order to match equation
(5rL)to the Sutherland formula at the cone surface (denoted
by subscript w):

(5b)

The quantity S may be taken as equal to (216° R)2cJu72J
The following additional physical assumptions are em-

bodied in equations (l):
(a) A thin boundary layer across which the static pressure

is c.mstfmt
(b) Prandtl number of 1 and constant ratio of speciiic

herds Y
(c) No heat transfer through the surface
l?rom equation (lc), since the case of Prandtl number of 1

und no heat transfer is considered, Tu in equation (5b) may
be taken equal to the dimensionless stream stagnation
temperature.

The bounda~ conditions on the functionsj(k,p) and g(~,p)
are: At the outer edge of the boundary layer, the u and w

velocity components should take on the corresponding
nonviscous values

Y..(~, P)=W(d (6a)

gA(~, $0)=Wl(p) (6b)

At the cone &rface, the u ‘&d w velocities should vanish

YA(G) =gA(o,9) =0 (6c)

and the normal velocity o should vrmish. It is shown in
reference 6 that this last requirement is met if

+(O,P)=g(o,P) =0 (6d)

Equations (l), involving two independent variables, would
be quite diiiicult to solve in general. However, a certain
amount of information can be obtained by restricting con-
sideration to the plane of symmetry, thus yielding a tractable
set of ordinary equations involving 1 as the only independent
variable..

In the plane of symme~ (P= O,r), w=gA=O. Because
u=ji is even about the plane of symmetry and may be
expected” to be regular there, jM=O. The pressure and
the density are also even, and therefore p’(p) vanishes at
w=O,r. Thus, in the plane of symmetry, equation (la)
reduces to the following equation:

(’+w’”+2’~=0 (7a)

Every term in equation (lb) vanishes at the plane of sym-
metry; and, therefore, m order to obtain a meaningful
equation, it is necessary fit to clifleren~iateequation (lb)
with respect to p and then drop terms which vanish at
p=O,r. This procedure yields the following result:

Equation (lc) becomes \

T+ (fx)’=T,+w2 (7C)

Equations (7) may be considered a set of ordinary dMer-
ential equations for the functions j(X,O) and g@(A,O), or
j(x,r) and gp(~,r), depending on whether the solution is
required at the bottom or the top of the cone. According
to equations (2), the resultj(X,O or r) may be differentiated
with respect to 1 to give the profle of meridional velocity u
in the plane of symmetry. The form assumed by the cir-
cumferential velocity proiile w as PO or ~ is given by
g@(A,Oor r) in the sense that, at a small angular distance dp
away from the plane of symmetry, w =ga dq.

The boundary conditions (eqs. (6)) become, in the plane
of symmetry,

jx(~,o or z)=w(O or 7r)

ga( ~,0 or m)=wlp(O or r)

}

(8)

jx(O,Oor r)=gd(O,O or r)=j(O,O or r)=gJO,O or 7r)=0

In view of the tit of equations (8) and of equtiion (7c), it is
convenient to specify the reference condition (subscript r)
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to be that esisting at the outer edge of the boundary layer,
for the particular angle o&%ttack under consideration,
evaluated at either q= Oor p= T, depending on whether the
analysis pert&s to the bottom or top of the cone.

Because the pressure is assuqed constant. across t,h~
boundary layer, equations (Id) ‘and (7c) and the assumption
of constant presmre across the boundary layer (P=PJ
provide that

;=;= 1+* [1– ~#’j (9)

( )/2
From conventions (4), 2’,= ~ 1~1’. For convenience,

.
the following definitions are made:

.

g, (X,o or m)=? W(X) (lea)

k=&jw,,(O or r) (lob)

Equation (9) and definitions (10) are introduced iu~ equa:
tions (7a) and (7b), and a value of p“ (Oor r) is assi.~ed con-
sistent with the nonviscous equations at the outer edge of
the boundary layer (p” (O or r) may conveniently- be ob-
tained from equations (lb) and (6) by setting g~=gW=O
when h= ~).

The following pair of simultaneous ordinary dMerential
equations then results:

(f+k$)f’’+zf’ff=o (ha)

(f+k$)q’+2V’’-k ()’:’-: #’f’+

@+;){ l+& [Hf’)1}=0 (llb)

-.
and boundary conditions (S) become

(l~a)f’(m) =#’(m)=l

f’(o) =+’(o)=o (12b)

f(o)= +(o)=o (12C)

Two parametem appear: k, which depends essentially on
angle of attack, and Tl, which is essentiallydependent on
Mach number. If the angle of attack (anti hence k) is zero
or nearly zero, equations (11) become precisely those con-
sidered in reference 7 and may be solved quite readily, sinca
equation (1lb) becomes linear and the solution of equation
(ha) is well bow-n m the Blasius function. When k diflera
substantially horn zero (moderate or large angle of attack),
equations (11) are both nonlinear and the solutions are
interdependent. For any particular case,, when only the
stream Mach number, cone vertex angle, and angle of attack
me specified, the parameters k and 2’1must be obtaiqed by
recourse to n theory of the outer nonviscous flow.

OUTZRNONVISCOUSFLOW

In references 1 to 3, the results of a theory of nonviscous
supersonic flow about circular cones at angle of attack are

tabulated. The case of zero angle of attack (ref. 1) is
solved exactly h the sense that no assumption of small
vertex angle is mada. The equations are then expanded in
powers of angleof attack with the use of the zero-angle-of-
attack solution as the first approximation. Terms linear in
angle of attack are presented in reference 2, and terms pro-
portional to the, square ‘of angle of attack are presented in
reference 3. Reference 4 claritk the. application of tho
theory to the computation of flow conditions at the corm
surface.

Th&e are two objections to the use of this theory in the
present application:

(1) Neglect of terms in the expansion beyond that in-
volving the square of angle of attack may lead to an insufE-
ciently accurate representation of the flow at the largo angles
of attack which are of interest. Unfortunately, no non-
viscous theory is available that treats the effect of angle of
attack with greater precision. In reference 4, a comparison
of the theoretical and experimental pressure distributions is
presented for a cone of semivertex angle of 10°, at D Moth
number of 2, and of an angle of attack of 12.2°. The agree-
ment shown is very good, especially since the angle of attock
is sufficiently huge that the pressure distribution is of the
type showp in figure 2(b).

(2) In reference 10, Fen-i points out that the method of
expansion used in references 2 and 3 is improper near the
cone surface and leads to an erroneous form of the entropy
distribution around the cone. Therefore, the theory cannot
be applied if the vertex angle, the angle of attack, or tho
Mach number is so large that the flow may not be considrmd
essentially isentropic. In referen-ce 7, an argument is pre-
sented to the effect that in the limit of infinitesimal angle of
attack the presence of a boundary layer ensures that the
error in entropy distribution is of no consequence even for
large cone vertax angle9. That argument in no way appliea
to the present analysis because the angles of attack con-
sidered are not intin.ites.hmd. For the purposes of this
report, the use of references 2 and 3 in their present form is
justified only in cases for which isentropic flow may be
assumed.

Accorc@ to reference 4, the velocity components at the
cone surface are, usin$gthe notation of references 1 to 3 for
quantities tabulated therein,

.,

Wy-l+ag Cos w+
u. u

[
2 $+::CO *t e+;+ ( )1:—;:cote+; COS2$7+ . . .

(13)

Wl(rp)

[ 1-=a~SiJI ~+”d Y&csce-~ cOte SiII2P+ . . . {14)
u

The pressure and density are

.-—... 1



JJA.MINAR BOUNDARY LAYER ON CONE IN SUH3RSONIC FLOW AT LARGE ANGllEl OF ATTACK 537

&=l+czi COSp+a2
P [

:+; x?+: : cot e+
P

(
:+; A?–; : cO’e)c0s2$’1+o~~ ’16’

Tlm barred qurmtities are those perttig to the case of ‘
. zero angle of attack. From equations (lOb), (13), and (14),

( )Q+22 ~–;–q ~
k=;

:+%+~(1+%%):--+” “ “ ~

or, approximately,

[ (
1 -z

)1k=; &;;+2.~ ~—p—T ;—$$ + . . . (17)

The plus or minus sign refers to P=O or m, respectively.
From conventions (4), equations (13), (15), and (16), and

the result of reference 1 that l~=Z’/(l –@=~ 1~, .
.

or, approximately,

i=s2{1+a(2:+:-;)+d[2 (1+%+2)+?+:-;-%-2A+2:(;-;)+$+$-;$l}+o -- ‘ls)
In figure 5 are shown k and l/Tl as functions of a for a cone

of semivertex angle of 7.5° and a stream Mach number of
3,1. From the tabulations of reference 2, it maybe inferred
that under these conditions the isentropic assumption leads
to errors of leas than 1 percent in quantities proportional
to the angle of attack.

SOLUTION OF EQUATIONS AT P-O

Equations (11) have been solved, subject to boundary
conditions (12), at q= O, and various angles of attack for a
cone of semivertex angle of 7.5° and a stream Maoh numbw
of 3.1 for which the values of k and 1/2’1are given in figure 5.
The computations were carried out by Dr. Lynn Albers of the
Lewis laboratory and are described in appendix B. The
resulting boundary-layer proiiles of meridional velocity u and
gradient of circurdferentialvelocity bw/@ are shown in figure
6. The curves for a=O are obtained from reference 7. The
pro~cs show clearly that, as the angle-of attack Mincreased,
the boundary layer becomes thinner on the bottom of the
cone, and the shear stress at the wall inoreases.

Skin friotion,-The meridional and circumferential com-
ponents of the viscous shear stress at the bottom of the cone
surface may be written in coefficient form as follow=

()au[O,=],..=+J’@ ,.,
7jPlul~ p-o

[Cf,],.o=o

where the quantities on the right are in dimensional form.
Application of equations (id), (2), (3), (4), (5), and (lOa)
yields

J
~ [O/=],.O= 2P(O) (19a)
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where
&=P1’w

I’ll . 1

Variation of these skin-friction ccdicients wit$ angle of
attack is shown in figure 7 for a particular case.

Displacement thickness.-ln reference 11 it is shown that
the displacement thicknesq A for a cone at angle of attack is
the solution of the equation . ‘ -

;OPIW.-IQ+=$ [PW(A- 13J]= O (20).
where a

‘~=~”(’-%i)d’
‘+x’-%)’”}

(21)

At P=O, w,=O and equation (20),maybe solved directly

A_&+k6, .
– l+k (22)

1.6

/ F
$ c~

1.2 -

/

/
/ r

#a——
x ap Cfy

.8

.4
/

/

o 4 e 12—
Angle of ottock, d, deg

Fmmm 7.—Meridionsd andcircumferentialskin-friotion oooffloknts at
p=o. M, 3.1; e, 7.50.

WGurm 8.—Displacement thiokness at p= O. ii, 3.1; 0, 7.5°

where k is’ deii.ned in equation (lOb). From equations (6) J
and (9), with & defined in terms of a Reynolds number,

., Pl’ldz~.———
,, PI

%=~~m [W’++ (1–j”)] d~ (23n)
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Using equations (10) and applying l’Hospital’s rule to
evalurde at p= O the limit of the ratio. w/m appearing in
equation (21) yield

.

Therefore,

(23c)

Figure 8 shows the variation of displacement thickness with
angle of attnck for a particular case and again illustrates the
exTected progressive shif~of the boundary layer from bottom
to top m the angle of attack is decreased.

LIMITATIONS OF METHOD AT P-T

Except fop quite small angles of attack, equations (11)
cannot be solved at the top of the cone (p= m). Over part
of the range of angle of attack, the solutions are indetermi-
natee; rind, beyond a certain angle of attack, the solutions
do not esist at all. These propertiw of equations (11) @
be demonstrated and discussed in the following paragraphs.

Asymptoth forms of equations,-The dii%culties just
mentioned may best be inferred from the asymptotic forms
of equations (11) at large X. From equation (12a) it is char
that, for large A, f and ~ may be written as f@lows:

j=k+F(x)

whero F’ ( ~ ) =#’ ( ~ ) =0. Substitution into equations (11)
yields the asymptotic forms for large x ,

(l+k)M’’’+!2”=o”=o (24a)

(1+k)x@’+2W- 2
‘+* “=W1+N+31()

(24b)

Indeterminate solutions -Consi~eration will now be given
to the problem of obtaining the complementary solution of
equation (24b). Defining a new dependent variable

*=e~xlq,

yields the equation

Qf’–
[ :k+++(%w”=o (25)

This is essentially Weber’s equation (ref. 12, paragraph
16.5), and the asymptotic solutions are

‘-%’2(%’)’-
k+lra

‘%’’(/%)=

Thus, the asymptotic complementary solutions of eqhation
(24b) are

(26a)

(26’)

Because it is required that Y’(@) =0, solution (26b) is
rejected when k>— 1/3. ~ k<— 1/3, both solu&ons may be
retained, and an additional undetermined constant appems.
When k>O (at the bottom of the cone), the complete solu-
tion of equations (11) exists and is unique, and solution
(26b) is to be rejected in fo~m the asymptotic solution.
Therefore, if solution (26b) and the associated constant must
be retained when k<– 1/3, it is clear that the complete
solution for k< — 1/3 cannot be unique. This indetermirmcy
has been verified by numericsl integration of equations (11),
as described in appendix B. .

This indeterminacy arises because essential information
has been lost by specializing the equations to apply only in
the plane of symmetry. When the equations me so written,
it is implied that the boundary-layer development in the
plane of symmetry .is affected only by conditions in that
plane. The lateral region of influence of points on the body
in the plane of symmehy grows parabolically (the shaded
regions in sketches (a) and (b)), according to the law of
molecular diffusion, when, as in the present instance, there
is no pressure gradient in the stream direction. Fluid entem
the boundary layer from the outer stream. If the fluid then
moves laterally (beqause of the angle of attack) out of the
region of influence of the plane of symmetry, as shown in
sketch (a), the flow is uniquely detenn.ined by outer stream
coriditions in the plane of symmetry. Clearly, this is the
case when p= r and a is small, and when q= Oand a has any
positive value. When P=r, except for small angle9 of
attack, the lateral motion of the fluid is inward relative to
the region of influence, as shown in sketch (b). This fluid
then brings into the region of influence of the plane of sym-
metry information concerning boundary-layer development
as it proceeds around the cone horn the bottom. Conse-
quently, outer stream conditions at P=W may not uniquely
determine the boundary-layer characteristics at P=r, and
indeterminate solutions of equations (11) maybe anticipated.

,

t
(a) [b) (c)
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The condition k= – ~ specifiesan angle of attack such that,
Wtq=r, the outer flow streamlines are just tangent to the
parabolic region of influence. This statement may be
proved as follows: Worn detition (lOb), if lc= – %, then
wJu,= –8/2. Near p=~ (see sketch (c)), w=qpdp=

w,, ~ Thus, when k= —%, wJul=r/2. From this last

equ~tion and the geometrical properties of parabolas, it may
be inferred that the streamlines are parabolas with focus at
the cone apex. Therefore, the situation shown in sketch
(b) applies if k< –% and equations (11) have no unique
solution.

It is noteworthy that the mathematical nature of tii
indeterminacy so far described is quite similar to that fihich
characterizes solutions of the Falkner+%rm equation for the
plane boundary layer when the outer flow velocitj is pro-
portional to z-= (z being the streamwise coordinate and m a
positive number). Hartree (ref. 13) has treated this prob-
lem in detail and tids an “extra” asymptotic solution similar
to equation (26b), decreasing with distance away from the
surface according to a power law. T& extra solution is
rejected by Hartree on the ground that an unrealisticfdly
thick boundary layer would be predicted if the solution
were retained.

A thorough study of the @ptotiC’natuie of equations
(1) ’might lead to a similar conclusion in the present problem.
However, in the present problem, the mathematical difficulty
goes deeper; when k>– %, numerical integration failed to
give unique results, even though solution (26b) is certainly
to be rejected. Thus, the condition k 2 —% is not suilicient,
but rather only necessary for uniqueness

Inspection of the proties shown rnfigure 6for a=k=O indi-
cates that, for O>k > — %, the stmamlihes within the bound-
ary layer may be expected to incline more sharply toward
the plane P=r than do the streamlinesnear the edge of the
bound~ layer and thus may bring information tim beneath
the cone even though the outer ones do not. Therefore, the
neceesary condition for uniqueness would be (see eqs. (2)
and (lOa)):

or,

(27a)

J?igure 6 indicatesthat perhaps the maximum value of #’/f’
is to be found at X=O, in which case criteri& (27a) would
become

(27b)

Nonexistence.—The solution of equation CMa) is

l+k ~,

‘F”=eT

The requirement thatF“( CO)=O is met only if k>–1. If
k S – 1,no solution of equation (24a) existi which satisfies

the boundary conditions, and, therefore, thePrandtl boundary-
layer equations fail to describe the flow. This was fit
p“ointedout by Hayes in reference 5. The Prandtl equations
difler from the exact equations essentially in that a thin
boundary layer is assumed. Thus, if k< –1, the boundary
layer cannot be regarded as thin. -It m~y be nobd that
equation (22) implies that, as k+— 1, the displacement
thickness approaches inhity.

‘Any boundary layer grows by the entrainment of fluid ot
its outer edge. That is, fluid particles acquire vorticity by
entry into the boundary layer. The reverse process cannot
occur-fluid particlm cannot leave the boundary layw, thus
losing their vorticity. In the case under consideration, it
will be shown that when k<– 1,the streamlines at the outer
edge of the boundary layer would proceed outward relativo
to the boundary layer, if the boundary layer were to retain
parabolic similarity. Because such a situation is physically
impossible, the Prandtl equations fail to yield a solution.

From reference 11, the normal velocity at the outer edge
of the boundary layer at P= ~ is

where his a somewhat arbitrary de.6nition Qf the outar edge

r)of the boundary layer and ~
ay y-.

is obtained from analysis

of the outar n&ciscous flow-. The equation of continuity
for the outer flow-,evaluated at the surface of the cone in the
plane of symmetry, maybe written

(29)

With equations (28) and (29) combined, the flow inclination
at the puter edge of the boundary layer is

The Piandtl (thin) boundary layer maybe espected to
only if

ah VI
z%

or, with equation (30) introduced, if

(30)

(31)

If parabolic similari~ is assumed (h and A each proportiomd
to @), inequality (31) becomes

or, from equation (lOb),
k>–1
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SEPARATION

The critical condition k= – 1 might be expected to be of
physical as well ns analytical significance because some sort
of catastrophic thickening of the boundary layer is implied.
In particular, this critical condition may reasonably be
supposed to be comected with the phenomenon of laminar
separation. In order to explore this possibility, it is fit
necessary to describe qualitatively what is meant by separa-
tion in threedimensional boundary-layer flow. Difficulty
has been encountered in establishinga satisfactory qualitative
criterion for threedime~ional separation (see, for example,
ref. 6). Therefore, in the subsequent paragraphs, the
general problem of threedimensional separation will be
discussed, and then the particular case of the cone at rmgle
of attack will be considered.

GENERAL CONSIDERATIONS

Plane flow.-ln plane flow, seprwation is customarily
identified by the appearance of reverse flow (sketch (d)).
In order to generalize this concept to three-dimensional
flow, it is necessary to consider the separated region as a
whole. In plane flow, the separation point of sketch (d)
might be regarded as the forward boundary of a vortex
sheet embedded, or encapsulated, within a region bounded
by the body and a stream surface meeting the body (sketch
(e)). Sketch (e) shows separation followed by reattach-
ment. Of course, the sort of separation of greatest engineer-
ing importanm occurs when such an embedded vortex sheet
rolls up to form a large concentrated vortex, or is shed as a
vortex street, with the consequence that the outer flow is
greatly disturbed and a large pressure effect (form drag).
occurs.

@ Separation poifi

-— —-.

(d) (e)

If rLboundary-layer solution of the type shown in sketch
(o) were obtained, the vortex sheet would be completely
embedded in a thin boundary layer, and would presumably
tend to remain flat against the body (leaving out of account
possible effects of laminar instability). However, if the
theoretically predicted vortex sheet extends downstream
into a region where the thin boundary-layer equations do
not apply (that is, where the solution “blows up” predicting
an infinitely thick boundary layer), then in that region the
vortex sheet would not be constrained to lie flat and the
rolling-u~ process would occur.

The foregoing discussion seems to provide the proper
description of what occurs behind a bluff body: A complete
solution of the thin laminar boundary-layer equations for
the flow over a cylinder would probably yield a streamline

rVortex sheets

pattern of the form shown in. sketch (f). The boundary
layer would be predicted to gain mass flow by entrainment
as it proceeds around the body, until it reaches the vicinity
of the rear stagnation point. There, the mass flow contained
in the boundary layer must finally leave the body and proceed
downstream. The boundary layer therefore cannot remain
theoretically thin, but rather must approach infinite thick-
ness in violation of the Prandtl assumptions. In this
region, th~, the aft boundaries of the pair of vortex sheets
are free to roll up into concentrated vortices, thus distorting
the outer flow in such a way that the rolling-up process
@%@fs most of the region which would otherwise be occupied
by a flat vortex sheet. The leading edge of the sheet,
however, is still constrained to lie flat against the body.

Three-dimensional flow ,—The foregoing description of
plane separation may be generalized to three-dimensional
flow as follows: A separated region on a three-dimensional
body consists of a vortex sheet embedded between the body
surface and a stream surface attached to the body in a closed
curve, as shown in sketch (g), which is a view of the body
from above. The arrows indicate possible directions of

(d
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resultant shear stress at the surface and outside the separated
region. The situation shown in the sketch would correspond
to separation and reattachment in plane flow. If somewhere
within or at the boundary of the separated region we theo-
retical boundary-layer solution would a priori be expected
to blow up, then the vortex system within the separahd
region is free to rolI up into a more or less vigorous system of
vortices. *

Thus, thin-boundary-layer theory can be used to obtain
the following information concerning laminar separation:

(1) The solution may establish the existence of a vortex
sheet which is embedded in a flat bubble on the surface.and
which could adhere to the surface and remain part of a thin
boundary layer, provided that the I?randtl equations are
valid everywhere in the separated region.

(2) The solution might predict the boundary layer to go
to iniinite thickness somewhere in the separated region. If
this happens, then the separated region is free to roll up, thus
providing a vigorous wake (which, of coursei is not amenable
to boundary-layer theory).

For flow about a plane body, the boundary-layer solution
is not needed for predicting the breakdown of the Prandtl
assumptions. Physical considerations suflice to establish
where (at stagnation point of outer flow) and when (always)
the breakdown occurs. In three-dimensional flow this is not

. alvmys so clear, and at least certain features of the solution
are required to be lmown. In order that the boundary-layer
equations be applicable, the solution must be such that the
boundary layer entrains fluid (that is, flow stawadines enter,

.but do not leave, the boundary layer at its outer edge). In
a Cartesian system, where L(z,z) is the outer edge of the
boundary layer, this requirement may be written as

ulh.+wlh.>(ol)~.h (32)

Equations (32) and (28) may be combined with the equation
of continuity in the form

‘a
~ [(h–A)PIUI] +: [(h–dmml]>O

or, in vector notation,

diV [(h–A)p,q,]>O (33)

where A is the displacement thickness, and ~1is the velocity
vector in the outer flow evaluatid at the body surface.

In many crises, circumstances may be found for which
inequali~ (33) cannot be satisiied- For example, for plane
incompressible flow about a cylinder and, as is customary,
with u and z defined parallel to the surface, inequality (33)
may be written

●

As the rear stagnation point of the outer flow is approached,
u, tends to zero, while –dul/dx remains finite and positive.
Therefore, since h–A by definition must be gmmter than
zero, d(h—A)/da must approach intinity in clenr violution
of the boundary-layer assumptions.

SEPARATION ON CONE AT ANGLE OF A’ITACK

In the previous discussion,it was concluded thut separation
involving a strong vortex pattern occurs if a tenhztivo
boundary-layer solution predicts an embedded vortex sheet
coupled with a local breakdown of the assumption of a thin
bound~ layer. In the case of the cone, inequality (33)
may be used to predict the circumstances under which the
boundary layer may not be regarded as @in: When the frwt
of parabo’fic similarity is introduced (h—A proportional
to —@, inequality (33) becomes

& (h.–A) ‘W,p–; (hLI
,.

, h_* > ,Wl
(34)

This inequality indicates infinite boundaqy-layer’ thick-
ness only when m= Oand, even then, only if WIpis negative
(which is true at the top of the cone, p=m) and @ger in
magnitude than #@ul. This is true only for angles of nttack
larger than that for which k= – 1 (by eq. (lOb)). When
the angle of attack “is smaller than this critical value, the
right member of inequality (34) is always negative, and
b(h–A)/@ may be considered to vanish by symmetry
at p=~ without violating inequality (34).

The foregoing result may be explained on physical grounds
as follows: As the boundary layer proceeds mound the cone,
it entrains fluid which it ;hen conve~ towbrd the top
(symmetrically, from both sides of the cone). In the plane
cylinder case, the fluid similarly conveyed must iimdly
erupt from the boundary layer when the stagnation point
is reached. However, on the cone, the boundary layer grows
parabolically along generators; and, hence, ‘If the crossflow
is not too strong (small angle of attack), the fluid brought
to the top may simply become part of the growing boundary
layer. For larger angles of attack, the boundary. layer
mot grow at a rate sufficient to absorb the arlditionnl
fluid, and eruption occurs with the consequent bl%akdown
of the thin=boundary-layer assumptions.

Accordingly, it is proposed that when the rmgle of attock
is, less than that for which k= — 1, a thin boundary Inyer
may cover the cone (fig. 3(a)). For larger angles of attack,
any vortex sheet present will roll up to form attached lobos
(fig. 3(b)); for still-larger angles of attack, a vortex street
is produced.

Thus, w-henk<– 1 (angle of attack greater than that for
which k= 1),strong viscous cross forces (viscous lift) on the
cone may be expected. These forces are discussed by Allen
&d Perkins in referehce 14. Of course, a weakness of the
present analyqis is that no indication is given as to the
strength of the rolled-up vortex system because, when k= — 1,

the presence of- an embedded vortex sheet over the top purt
of the cone has not been ~tablished. It seems likely that
such a vortex sheet does exist because a rather strong adverse
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Streom Moth number, A4

~I13UItE 9.—lfinimum angle of attack for whioh separation appeam at
q=r.

pressure gradient (~. 2(b)) always exists when k= –1. In

fact, it may be shown (most conveniently by evaluating eq.
(7R) at A= m) that im adverse pressure gradient exists
when k<— 2/3.

Equations (13), (14), and (lOb) give the critical angle of
attack corresponding to k= —1. This angle is presented as
~ function of stream Mach number and vertes angle. Figure
9 shows the remdts of such a calculation. The critical angle
of attack is given m a ratio of angle of attack to semivertex
angle for convenience. The results suggest that, in general,
sopmation involving lobes occum later (in terms of relative
angle of attack @) for the smaller vertex angles, particu-
larly at higher Mach numbers. Figure 9 indicatea the pos-
sibility of rather profound qualitative differences in the
flows at high Mach number about cones of different vertex
angles.

The foregoing interpretation of the critical condition
1:= —1 is supported by the experimental result shown in
figure 4. From figure 5, k= –1 when a=6.2°, under the
conditions of the test. Figure 4(b) shows the measured’
total head rising as the angle of attack is increased beyond
6.2°. Possibly th~ effect is caused by the induced field of
the symmetrical pair of vortex lobes sweeping away the
thick boundary layer between, thus reestablishing a thin
boundary layer at the top of the cone.

It may be of interest to note that if similarity also hol&
for the turbulent boundary layer on a cone, and the similari~
Imv is nearly linear (rather than parabolic as in the laminar
case), separation would tit appear at a higher angle of
attack than in laminar flow. In fact, equations (lOb) and
@l) or (33) would yield the criterion k=–4/3.

For the boundary layer produced by supersonic flow over
any smooth conically symmetric body in supersonic flow
(such as a cone of elliptic cross section), inequality (33) and
the condition of parabolic boundary-layer similari~ may be
used to fmd a criterion equivalent to k= —1 for the mtium
angle of attack consistent with a thin boundary layer.

CONCLUSIONS

The laminar boundary-layer flow about a circular cone at
large angles of attack to a supersonic stream has been ana-
lyzed in the plane of symmet~ with the following results:

1: At the bot~m of the cone, profiles of meridional ve-
locity and of the gradient of circumferential vdocity were
determined and showed the expected tendency of the bound-
ary layer to become thinner on the underside of the cone as
the angle of attack is increased.

2. At the top of the cone, except for very small angles of
attack, the analysis (which is restricted to the plane of sym-
metry) failed for the following reasons:

(a) For anglea of attack greater than-some rather small
value, the boundary layer brings information from beneath
the cone into the vicinity of the plane of symmetry at the top.
Therefore, the analysis, which deals only with the plane of
symme~, yielded indeterminate solutions.

(b) For angles of attack greuter than some angle (roughly
of the order of the cone semivertex angle), no boundary-
layer solution is possible. The characteristics of the outer
flow and the lmown parabolic similarity of the boundary
layer woidd together imply that, beyond this critical angle,
there would be a componeqt of flow leaving the boundary
layer. This is physically impossible, since a boundary layer
always entrains fluid. Thus, beyond the critical angle of
attack, no solution can exist for equations which presume a
thin boundary layer.

For three-dimensional flow it is proposed that a separated
region be regarded as a vortex sheet embedded in the bound-
ary layer, remaining flat against the body if the assumption
of a thin boundary layer is valid throughout the region. If,
however, the boundary-layer assumptions break down rmy-
where in the separated region, it is inferred that the vortex
sheet may roll up to form strong vorticw which may either
remain attnched or be shed as a vortex street..

On the cone, therefore, the critical angle of attack beyond
which rio boundary-layer solution is possible at the top of
the cone represents the maximum angle of attack for which
the boundary layer is eve~here thin or, alternatively, the
minimum angle of attack for which major disruption of the
flow may be expected because of the formation of strong
vortex lobes. Beyond this angle of attack, strong viscous
cross forces may be anticipated.

A similar criterion could easily be obtained for the bound-
ary layer on any smooth cxmkally symmetric body in super-
sonic flow.

The assumption of a suitable similtity.law sufhes to es-

tablish a similar criterion if the boundary layer on a conical
body is turbulent.

Ln%s FLIGHT PROPULSION LABORATORY

NATIONAL AOVISORY Commmwa FOR AERONAUTICS

CLEVELAND, Oreo, September 15, 1952?
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APPENDIX A
, SYMBOLS

.
The following symbols are used in this report:

c

C,z

c,,

Cp
F(x)

f(w)

g(x,(p)

h
k

l-’
u
v
w
x

?4
a

constant appearing in temperaturf3viseosity
relation (eq. (5a))

component of skin-friction cceilicient in
z-direction

component of skin-friction coefEcient in
#-direction

specfic heat at constant pressure
function appearing in asymptotic representa-

tion of $ (eqs. (24))
funcdon related to meridional velocity u by

eq. (2)
function related to circumferential velocity

w by eq. (2)
height of outer edge of boundary layer
related to circumferential gmdient of cir-

cumferential velocity in plane of symmetry
(eq. (lOb))

.Mach number
static pressure
velocity vector at outer edge of boundary

layer
ReynoIds number, ~ulz/Pl
Reynolds numbem, PIUIA/PI, muI&./YI,

fiU&/Pl, respectively
absolute static temperature
meridional component of velocity .
component of velocity normal to surface
circumferential velocity component
coordinate along generators of cone
eoordirmtenormal to surface
angle of attack (positive as shown in&. 1)

-Y
A

6Z .

e
0
A

P

P

;(x)

*(N

Subscripts:

T

1’

Superscripts:
!

—

APPENpIX B

ratio of sp-ecificheats
displacement surface height
mass-flow defect associated

velocity proiile (eq. (21))
mass-flow defect associated with circum-

fer@id profile (eq. (21))
semivertex angle of cone
sine of semivertm angle of cone
dimensionless variable (eq. (3))
coefficient of viscosity *
density .
angular ~ordinate around cone
function appearing in asymptotic repre9mtn-

tion of Y (eqs. (24))
funtition reIated to circumferential tolocity

w in plane of symmetry by equation (1OW)

maximum
reference condition, nonviscous flow at

surface, at P= O or p= T, whiohevor is
appropriate

evaluation at outer edge of boundary loyor
(alternatively, nonviscous flow fit surf~co) .

Subscript notation for partial differentiation
has been used

Primes denote ordinary differentiation with
respect to h or P

Bar over quantity indicates evaluation of
nonvisco~ flow- at surface whm cmm is
at zero angle of attmk

NUMERICALSOLUTIONOF DIFFERENTIALEQUATIONS
By Lmm

The two simultaneous nonlinear ordinary differential I
equations (1la) and (1lb) together with boundwy conditions
(12) co~t,itute a two-point boundary-v&e problem. The
method of numerical solution used .appliea directly only to
problems for which all boundary conditions are speci6ed at
a single initial point (the ori.ti, in the present case). Each
numerical integration was therefore performed starting with
boundmy conditions (12a) and (12b) and a tentative speci-
fication of f“ (0) and +“ (0). In each case, such integration
was carried out for a sticient variety of conditions ~’ (0)
and ~“ (0) so that the correct set of initial conditions yielding
the proper behavior at X= ~ (boundary condition (L2a))
could be inferred to the desired degree of accuracy.

Integration was performed aeeording to the following basic
scheme: With the value off’” (x) and +’” (k) given at five
closely spaced values of X, fourthdegree polynomials may be

with meridional

ALBHES I

passed through the two sets of valuea off’” and $’”. Tlmn,
if j, j’, j“, ~, #’, and #“ are kno}m at the fifth po~t, th~
polynomial representations of ~“ and x’” ruay be integrated
to yield j, j’, f“, +, +’, and #“ at the next (s~~th) poiut.
These quantities may then be substituted into differential
equ&ons (11) to yield f’” and #’” at the sixth Poht. In
this way, the solution may be extended one step at a time, in
each step by use of the solution at the five previous poin$s.
In order to begin this procedure, the solution must fit be
found at five points starting at the origin and must be subject
to boundary conditions (12b) and (12c) and the tentative
selection of j“ (0) and *“ (0).

This preliminary calculation was done in the following
reamer: f’” (0) was calculated directly from equations (11)
and (12) and was used as an initial estimate of~” at the next
four points. Given j(0), j’(0), and7’(0), the values of j, y,
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and ~’ were computed at the second point by integr&ng a
fourth-degree polynomial passed through the five values of
$~;o ~~ma:tiar ma~er, +, +’, and *“ at the second point

Direct substitution into equations (11) then
yields improved estimates for~”, and +’” at the second point
and thus an improved polynomial representation of these
functions which may. be used to obtain values of ~, Y, ~’, #,
~’, and #’ at the second point, and so forth, until improved
values have been obtained at the fifth point. This procedure
was repeated in an iterative manner until convergence was
obtained at each of the five initial points.

All calculations were performed on the IBM Card Pro-
grammed Electronic Calculator. Results me considered
correct, to four sieticant figures.
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